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BRST Quantization of the Siegel Action
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The BRST quantization of the Siegel action is studied.

1. INTRODUCTION

Self-dual fields in one-space, one-time dimension called chiral bo-

sons(1±10) are basic ingredients of some string theories.(1) They also play an

important role in studies of the quantum Hall effect(2) and have attracted

wide interest recently.(1±10) These fields satisfy the self-duality condition

f Ç 5 f 8, where the overdot and prime denote time and space derivatives,

respectively. Siegel(5) proposed an action of a two-dimensional, doubly self-
dual, chiral boson. (5±10) Modifications of the Siegel action achieved by the

addition of appropriate Wess±Zumino terms to the action have been consid-

ered in the literature.(8,9) The Becchi±Rouet±Stora and Tyutin (BRST) quanti-

zation of the Siegel action modified by the inclusion of an extra ª Liouville

termº to the original action has been studied in ref. 9. In ref. 10 we studied

the Hamiltonian formulation(11) of the Siegel action in various gauges. In the
present work we study the BRST quantization(12,13) of this theory(5) (without

any modifications) following ref. 13. After briefly recapitulating the basics

of the model in Section 2, its BRST formulation is investigated in Section 3.

2. BASICS OF THE MODEL

Siegel’ s (second-order ) action in one-space, one-time dimension

is(5,6,10)

1 Department of Physics, University of Kaiserslautern, D-67653 Kaiserslautern, Germany.
2 Permanent address: Department of Physics and Astrophysics, University of Delhi, Delhi-
110007, India; e-mail: usha@himalaya.d u.ac.in.

1399

0020-7748/99/0500-139 9$16.00/0 q 1999 Plenum Publishing Corporation



1400 Kulshreshtha et al.

S 5 # + dt dx (2.1a)

+ 5 1±2 f Ç 2 2 1±2 f 82 1 l ( f Ç 2 f 8)2 (2.1b)

We use the Lorentz metric g m n : 5 diag( 1 1, 2 1), and overdots and primes

denote time and space derivatives, respectively. As a consequence of the

Euler±Lagrange equations for (2.1) one has

f Ç 5 f 8 and f È 5 f 9 (2.2)

The dynamics of the chiral boson is contained in (2.2). The theory is seen
to possess one primary constraint:

V 1 : 5 p l ’ 0 (2.3)

The total Hamiltonian density corresponding to (2.1) is(10)

*T 5
1

2
p 2 1

1

2
f 82 2

l
1 1 2 l

( p 2 f 8)2 1 p l u (2.4)

where u is a Lagrange multiplier field. The time evolution of V 1 leads to a

secondary constraint

V Ä 2 5
1

(1 1 2 l )2 ( p 2 f 8)2 ’ 0 (2.5)

which is classically equivalent to(10)

V 2 5 ( p 2 f 8) ’ 0 (2.6)

The matrix of the Poisson brackets of V 1 and V 2 (using the conventions of

ref. 10) is

R a b : 5 { V a , V b }P 5 F 0 0

0 2 2 d 8(x 2 y) G (2.7)

Here, the matrix R a b is clearly singular, implying that the constraints V 1 and

V 2 together form a set of first-class constraints. The first-class nature of the

set of onstraints V 1 and V 2, in turn, ensures the gauge invariance of the

theory [S(2.1)] which is seen to be invariant under the so-called Siegel gauge
transformations(5,6,10)

d f 5 e ( f Ç 2 f 8) (2.8a)

d l 5 2 1±2 ( e Ç 1 e 8) 1 e ( l Ç 2 l 8) 2 l ( e Ç 2 e 8) (2.8b)

d p 5 e [(1 1 2 l )( f È 2 f Ç 8) 2 2 l ( f Ç 8 2 f 9)

1 2( f Ç 2 f 8)( l Ç 2 l 8)] 2 e 8[ f Ç 2 f 8] (2.8c)
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d p l 5 0 (2.8d)

where l can be made equal to any given function of x and t, for an appropriate
choice of the gauge parameter e . The Hamiltonian formulation of the theory

in various gauges has been studied in ref. 10. In the next section we study

the BRST formulation of the theory following ref. 13.

3. THE BRST FORMULATION

In considering the BRST formulation(13) of the Siegel action (2.1),(5,6,10)

we first convert the total Hamiltonian density into the first-order Lagran-

gian density:

+IO 5 p f Ç 1 p l l Ç 2 *T

5 p f Ç 2
1

2
p 2 2

1

2
f 82 1

l
1 1 2 l

( p 2 f 8)2 (3.1)

The first-order action of the theory SIO 5 * +IO dt dx with +IO given by

(3.1) is seen, with the use of p 5 - +/ - f Ç 5 [ f Ç 1 2 l ( f Ç 2 f 8)],(10) to be

explicitly invariant under the gauge transformations (2.8).

3.1. Chiral Bosons and BRST Invariance

Following ref. 13, we rewrite our gauge-invariant theory(5,10) as a quan-

tum system which possesses the generalized gauge invariance called BRST

symmetry. For this, we first enlarge the Hilbert space of our gauge-invariant

model(5,10) and replace the notion of a gauge transformation which shifts

operators by c-number functions by a BRST transformation which mixes
operators having different statistics. We then introduce new anticommuting

variables c and c called Faddeev±Popov ghost and antighost fields, respec-

tively (Grassmann numbers on the classical level, operators in the quantized

theory) and a commuting variable b called the Nakanishi±Lautrup field

such that

d Ãf 5 c( f Ç 2 f 8) (3.2a)

d Ãl 5 2 1±2 (cÇ 1 c8) 1 c( l Ç 2 l 8) 2 l (cÇ 2 c8) (3.2b)

d Ãp 5 c[(1 1 2 l )( f È 2 f Ç 8) 2 2 l ( f Ç 8 2 f 9)

1 2( f Ç 2 f 8)( l Ç 2 l 8)] 2 c8[ f Ç 2 f 8] (3.2c)

d Ãp l 5 0, d Ãc 5 c(cÇ 2 c8), d Ãc 5 b, d Ãb 5 0 (3.2d)
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with the property d Ã2 5 0. We now define a BRST-invariant function of the

dynamical variables to be a function f( p , p l , Pb , p c , p cÅ , f , l , b, c, c) such

that d Ãf 5 0.

3.2. Gauge Fixing in the BRST Formalism

Performing gauge fixing in the BRST formalism implies adding to the

first-order Lagrangian density (3.1) a trivial BRST-invariant function.(13) We

thus write the quantum Lagrangian density

+BRST 5 +IO 1 d ÃF c 1 2 2 l Ç 1
1

2
b 2 G

5 p f Ç 2
1

2
p 2 2

1

2
f 82 1

l
1 1 2 l

( p 2 f 8)2

1 d ÃF c 1 2 2 l Ç 1
1

2
b 2 G (3.3)

The last term in Eq. (3.3) is the extra BRST-invariant gauge-fixing term.

Using the definition of d Ãwe can rewrite +BRST (with some partial integrations):

+BRST 5 p f Ç 2
1

2
p 2 2

1

2
f 82 1

l
1 1 2 l

( p 2 f 8)2

1
1

2
b2 2 2b l Ç 1 cÇ (cÇ 1 c8) (3.4)

The quantum action SBRST 5 * +BRST dt dx with +BRST given by (3.3) or

(3.4) is explicitly invariant under the BRST transformations (3.2). Proceeding

classically, the Euler±Lagrange equation for b reads

b 5 2 l Ç (3.5)

Also, the requirement d Ãb 5 0 [cf. Eq. (3.2d)] implies

d Ãb 5 2 d Ãl Ç 5 0 (3.6)

which in turn implies

cÈ 1 cÇ 8 5 0 (3.7)

The above equation is also an Euler±Lagrange equation obtained by the

variation of +BRST with respect to c. In introducing momenta we have to be

careful in defining those for fermionic variables. Thus we define the bosonic

momenta in the usual way so that
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p l 5
-
- l Ç

+BRST 5 2 2b (3.8)

but for the fermionic momenta with directional derivatives we set

p c : 5 +BRST
-
¬

- cÇ
5 cÇ ; p c : 5

-
-
- cÇ

+BRST 5 (cÇ 1 c8) (3.9)

implying that the variable canonically conjugate to c is cÇ and the variable

conjugate to c is (cÇ 1 c8). In forming the Hamiltonian density *c from the
Lagrangian density in the usual way we remember that the former has to be

Hermitian. Then

*BRST 5 p f Ç 1 p l l Ç 1 p ccÇ 1 cÇ p c 2 +BRST

5
1

2
p 2 1

1

2
f 8

2
2

l
1 1 2 l

( p 2 f 8)2 2
1

8
p2

l 1 p c( p c 2 c8) (3.10)

We can check the consistency of (3.9) with (3.10) by looking at Hamilton’ s

equations for the fermionic variables, i.e.,

cÇ 5
-

-
- p c

*BRST, cÇ 5 *BRST
-
¬

- p c

(3.11)

Thus

cÇ 5
-

-
- p c

*BRST 5 ( p c 2 c8); cÇ 5 *BRST
-
¬

- p c

5 p c (3.12)

in agreement with (3.9). The fermionic variables are assumed to anticommute

so that

{ p c , p c} 5 {c, c} 5 0;
d

dt
{c, c} 5 0 or {cÇ , c} 5 2 {cÇ , c}

(3.13)

where { , } means anticommutator. Demanding that c satisfy the Heisen-

berg equation

[c, *BRST] 5 icÇ (3.14)

and using the property c2 5 c 2 5 0, one obtains

[c, *BRST] 5 {cÇ , c} cÇ (3.15)
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Then Eqs. (3.13)±(3.15) imply

{cÇ , c} 5 2 {cÇ , c} 5 i (3.16)

Here the minus sign in the above equation implies the existence of states

with negative norm (in the fermionic sector) in the space of state vectors of

the theory.(13) The existence of these negative norm states as free states of

the fermionic part of *BRST is, however, irrelevant to the existence of physical
states in the orthogonal subspace of the Hilbert space.

3.3 The BRST Charge Operator

The BRST charge operator Q is the generator of the BRST transforma-

tions (3.2). It mixes operators which satisfy Bose and Fermi statistics and

its commutators with Bose operators, and its anticommutators with Fermi
operators in the present case satisfy(13)

[ f , Q] 5 F 2 2c( p 2 f 8)

(1 1 2 l )2 G ; [ p l , Q] 5 F 2 4c( p 2 f 8)2

(1 1 2 l )3 G (3.17a)

[ p , Q] 5 F 2c( p 8 2 f 9)

(1 1 2 l )2 2
8c l 8( p 2 f 8)

(1 1 2 l )3 1
2c8( p 2 f 8)

(1 1 2 l )2 G (3.17b)

[ l , Q] 5 cÇ ; {cÇ , Q} 5 2 F ( p 2 f 8)2

(1 1 2 l )2 G (3.17c)

where all other commutators and anticommutators involving Q vanish. In
view of (3.17), following ref. 13, the BRST charge operator of the present

theory can be written as

Q 5 # dx H ic F ( p 2 f 8)2

(1 1 2 l )2 G 2 icÇ p l J (3.18)

It is easy to see that Q is nilpotent and therefore satisfies Q2 5 0 and that
it also commutes with HBRST . The nilpotency of Q and Q [defined later by

(3.20)] follows as a consequence of the fact that c, c, cÇ , and cÇ are Grassmann

variables so that c2 5 c2 5 cÇ 2 5 cÇ 2 5 0, implying that {c, cÇ } 5 {c, cÇ } 5
0, which, in turn, implies that 2Q2 5 {Q, Q} 5 2Q2 5 {Q, Q} 5 0. Further,

Eq. (3.18) implies that the set of states satisfying the conditions V 1 ) c & 5 0

and V Ä 2 ) c & 5 0 (or V 2 ) c & 5 0) belongs to the dynamically stable subspace
of states ) c & satisfying Q ) c & 5 0, i.e., it belongs to the set of BRST-invariant

states. Also, because Q ) c & 5 0, the set of states annihilated by Q contains

not only the set of states for which V 1 ) c & 5 0 and V Ä 2 ) c & 5 0 (or V 2 ) c & 5
0), but also additional states for which c ) c & 5 cÇ ) c & 5 0, with V 1 ) c & Þ 0
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and V Ä 2 ) c & Þ 0 (or V 2 ) c & Þ 0). However, the Hamiltonian is also invariant

under the anti-BRST transformations (in which the role of c and 2 c is

interchanged) given by

d Ãf 5 2 c( f Ç 2 f 8) (3.19a)

d Ãl 5 1±2 (cÇ 1 c8) 2 c( l Ç 2 l 8) 1 l (cÇ 1 c8) (3.19b)

d Ãp 5 2 c[(1 1 2 l )( f È 2 f Ç 8) 2 2 l ( f Ç 8 2 f 9)

1 2( f Ç 2 f 8)( l Ç 2 l 8)] 1 c8[ f Ç 2 f 8] (3.19c)

d Ãp l 5 0, d Ãc 5 2 c(cÇ 2 c8), d Ãc 5 2 b, d Ãb 5 0 (3.19d)

with generator or anti-BRST charge

Q 5 # dx H 2 i c F ( p 2 f 8)2

(1 1 2 l )2 G 1 i cÇ p l J (3.20)

We now have [Q, H ] 5 0, as well as [Q, H ] 5 0, and we impose the dual

condition that both Q and Q annihilate physical states, implying that

Q ) c & 5 0 and Q ) c & 5 0 (3.21)

The states for which V 1 ) c & 5 0 and V Ä 2 ) c & 5 0 (or V 2 ) c & 5 0) satisfy both
of these conditions and, in fact, are the only states satisfying both of the above

conditions because in view of Eq. (3.16), we cannot have simultaneously c,

cÇ and c, cÇ applied to ) c & to give zero. Thus we see that the only states

satisfying (3.21) are those that satisfy the constraints of the theory V 1 5 0

and V Ä 2 5 0 (or V 2 5 0), and also that these states belong to the set of BRST-

invariant and anti-BRST-invariant states.
It is important to observe here that when we study the usual Hamiltonian

formulation of a gauge-invariant theory (like the present one) under some

gauge-fixing conditions, we necessarily destroy the gauge invariance of the

theory. However, in the BRST formulation when we imbed the gauge-invara-

int theory (+) into a BRST-invariant system, the Hamiltonian density *BRST

(which includes the gauge-fixing contribution) commutes with Q as well as
with Q. The new symmetry which replaces the gauge invariance is maintained

and hence projecting any state onto the sector of BRST- and anti-BRST-

invariant states yields a theory which is isomorphic to +.

The BRST quantization of the original Siegel action defined by (2.1),(5)

which is the Siegel action without any modifications, is thus complete.
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